Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Chemphyschem ; 23(23): e202200382, 2022 Dec 05.
Article in English | MEDLINE | ID: covidwho-1971249

ABSTRACT

A structural analysis over various spike proteins from three highly pathogenic Betacoronavirus was done to understand their structural differences. The proteins were modeled using crystal structures from SARS-CoV, MERS-CoV, and other Betacoronavirus that infect bats and pangolins. The group was split in two sets; the first set corresponds to the non-mutated spike proteins, while the second set corresponds to mutated spike variants alpha, beta, gamma, delta, omicron and mu; five of them classified as variants of concern and the last one as variant of interest. A conformational space exploration was carried out for every protein by using molecular dynamic simulations. Root mean square fluctuations, principal component and cross-correlation analysis were carried out over the dynamics to analyze the flexibility and rigidity of every protein in comparison to the wild type Spike protein from the SARS-CoV-2. The obtained results indicate that the proteins, which are not spread among humans, have smooth movements compared to those of SARS-CoV-2 and its variants. In addition, a relationship between the speed of the virulence and the movement of the protein can explain the behavior of delta and omicron variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Molecular Dynamics Simulation , Spike Glycoprotein, Coronavirus/genetics , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL